REFERAT FIZICA | Istoria telescopului

Publicat de: Madalina Marcu

Principiul optic fundamental al telescopului a fost descris pentru intaia oara de cercetatorul britanic Roger Bacon in secolul 13. Magicianul olandez Hans Lippershey e creditat pentru inventia telescopului in anul 1608 cand a descoperit ca un obiect distant aparea mult mai apropiat cand era vizionat printr-o lentila concava si o lentila convexa tinuta in fata ei. El a montat lentilele intr-un tub pentru a construi primul telescop.

Primele telescoape nu erau folosite pentru observarea cerului ci erau folosite in scopuri militare, pentru a detecta armatele care avansau sau vapoarele. Stirea despre descoperirea telescopului a fost s-a raspandit rapid in Europa. Tehnicile de lustruire a sticlei cunoscute inca din secolul 13 au facut usoara construirea si dezvoltarea telescopului. Istoricii il crediteaza pe omul de stiinta italian Galileo Galilei cu prima folosire a telescopului pentru observarea obiectelor ceresti. Acesta a folosit in 1609 un telescop facut de el insusi cu care putea mari obiectele de 20 de ori. El a descoperit 4 luni care orbita in jurul planetei Jupiter. In anul urmator el a descoperit ca Calea Lactee are milioane de stele, a vazut petele negre de pe suprafata Soarelui si a facut o harta a Lunii.

Telescopul a facut un important pas in secolul 17 cand astronomul scotian James Gregory a inventat telescopul reflectator. Matematicianul englez Isac Newton a fost primul care a construit un astfel de telescop in 1688 . Astronomii au descoperit ca telescoapele reflectatoare produc imagini mai clare pentru ca oglinzile folosite de acestea puteau fi mult mai mari decat lentilele telescoapelor refractoare. Primele oglinzi de telescop erau acoperite cu un aliaj de cupru si cositor. In curand au inceput sa fie construite oglinzi din ce in ce mai mari. La mijlocul secolului 18 astronomul irlandez William Parson a construit un telescop de 180 cm in Irlanda cu care putea vedea nebuloasele ca niste pete neclare de lumina care contineau indicii despre un univers mult mai complex decat se credea in vremea lui. Telescopul lui Parson a ramas cel mai mare telescop din lume pana la construirea telescopului Hooker de 254 cm de pe muntele Wilson in S.U.A. in 1917. Acesta era destul de puternic pentru a observa stele in galaxii invecinate aducand dovada ca galaxia noastra este doar una din galaxiile care umplu universul. In 1950 telescopul Hale a fost deschis si a ramas cel mai bun telescop al lumii pentru aproape jumatate de secol. A fost folosit pentru a face masurari ale expansiunii universului si a descoperit noi fenomene cum ar fi quasarii.

Lansarea de catre Japonia a programului de observare a spatiului a creat un telescop radio mai mare ca Pamantul. Satelitul lansat si cele 40 telescoape aflate pe Pamant combina semnale pentru a forma imagini de 3 ori mai clare decat era posibil pana acum.

Refractorul lui Galileo

Un telescop construit in 1608 de opticianul olandez Hans Lippershey a atras atentia omului de stiinta italian Galileo, care a realizat cat de util ar fi acesta in astronomie. Galileo a imbunatatit rapid modelul lui Lippershey si a inceput sa construiasca o serie din ce in ce mai buna de telescoape. Cu ele, el a facut o serie de descoperiri, incluzand muntii si vaile de pe Luna si patru din lunile lui Jupiter.

Dupa ce descoperirea lui Galileo a aratat cat de important este telescopul, modelul folosit de el a devenit cunoscut ca fiind telescopul lui Galileo si sta la baza binoclului modern.

Telescopul lui Galileo functioneaza prin refractia luminii si este de asemenea cunoscut ca telescop refractar. Un alt tip de telescop refractar in care ambele lentile sunt convexe, este cel care formeaza o imagine marita dar rasturnata, si este cunoscut ca fiind un telescop astronomic.

Reflectorul lui Newton

Una din problemele telescopului refractar, era ca din cauza unui defect de lentila numit aberatie cromatica, se producea o margine colorata nedorita in jurul imaginii. Ca sa elimine aceasta problema omul de stiinta englez Isaac Newton a proiectat un telescop reflectiv, in 1660. O oglinda plata reflecta lumina intr-o lentila convexa aflata in ochean si montata pe latura tubului principal. Acest tip de telescop este cunoscut ca telescopul lui Newton si este folosit de astronomii amatori.

Microscopul

Lupa este adeseori numita microscop simplu, pentru ca este utila in observarea obiectelor mici . Pentru o marire accentuata cu un minimum de deformare a imaginii este folosit un sistem de doua sau mai multe lentile. Un astfel de dispozitiv este numit microscop compus.

Cel mai simplu microscop compus contine doua lentile convexe. Imaginea marita de lentilele obiective este marita mai departe de lentilele ocheanului. Ca si la telescopul astronomic, imaginea este rasturnata, dar acest lucru nu este important la vizualizarea unor mostre minuscule. Multe microscoape compuse au o gama de lentile de diferite puteri.

Aberatiile lentilelor

Pentru a determina cu precizie performantele unui complex de lentile, vom urmari directia luminii prin el, folosind legea lui Snell pentru fiecare segment optic. La sfarsitul procesului de urmarire, se observa ca nu toate razele de lumina ce au strabatut complexul de lentile se supun legii paraxialitatii. Aceste devieri de la imaginea reala se traduc prin aberatiile lentilelor.

Directia unei raze de lumina dupa refractie la interfata a doua medii omogene si izotrope, cu indici de refractie diferiti este data de legea lui Snell:

unde este unghiul de incidenta, unghiul de refractie, masurate fata de normala ca in figura de mai jos.

Desi aparatele de analizat sistemele optice sunt tot mai performante si mai usor de folosit, este deosebit de folositor a avea metode sintetice de estimare rapida a performantelor lentilelor. Aceasta nu numai pentru ca salveaza timp pretios in fazele initiale ale proiectarii, dar asigura si o implementare pentru sisteme automatizate de calcul in vederea optimizarii ulterioare.

Primul pas in sensul dezvoltarii acestor metode este descompunerea in serie Taylor a functiei sinus din ecuatia lui Snell:

Prima aproximare pe care o putem face este inlocuirea sinusurilor cu argumentele lor. Aceasta se numeste teoria de ordinul intai sau teoria paraxiala deoarece doar primii termeni ai descompunerii sunt folositi, restul fiind neglijati.

Orice proiectare a unui sistem de lentile incepe cu aceasta aproximatie.

Conventia este valabila pentru unghiuri apropiate de zero. Pentru suprafete puternic curbate (si raze marginale) aceasta teorie paraxiala greseste masiv si apar deviatii de la realitate, deviatii cunoscute ca aberatii.

Asa cum am mai spus, urmarirea exacta a razelor este singura cale riguroasa de a analiza suprafetele lentilelor. Insa, cu cat analiza este mai precisa, cu atat este mai costisitoare din toate punctele de vedere.

Seidel a elaborat o metoda de a calcula aberatii rezultate de la termenul al dezvoltarii. Astfel, aberatiile ce rezulta din acest calcul sunt numite aberatii de ordinul 3.

Pentru simplificarea calculelor, Seidel a clasificat aceste aberatii ale sistemelor optice. Pentru lumina monocromatica avem:

aberatia sferica
astigmatismul
curbarea imaginii la margini
coma
distorsiunea

Pentru lumina policromatica mai avem

aberatia cromatica
culoarea laterala

In practica actuala aberatiile apar mai mult in combinatii decat separat. Acest sistem de clasificare face analiza mult mai simpla si ofera o buna descriere a performantelor unui sistem optic.

Aberatia sferica

Figura de mai jos reprezinta deviatia unui front de radiatie laser prin o forma sferica. Daca frontul de unda al unui laser are aberatie sferica, atunci un punct focalizat al acestui front de unda va fi stralucitor si inconjurat de un halou vag. In sistemele optice, aberatia sferica tinde sa defocalizeze imaginea si sa reduca contrastul.

Cu cat raza intra in lentila mai departe de axa optica, cu atat mai aproape de lentila se focalizeaza (intersecteaza axa optica). Distanta de-a lungul axei optice intre punctul de intersectie al razelor care sunt aproape pe axa optica (axa paraxiala) si planul focal (unde se afla F”) se numeste aberatie sferica longitudinala (ALS). Inaltimea la care aceste raze intercepteaza planul focal paraxial se numeste aberatie sferica transversala (ATS). Aceste marimi sunt dependente prin formula:

Aberatia sferica este dependenta de forma lentilelor, orientare si raportul conjugarii, ca si de indicele de refractie al materialelor.

Teoretic, cea mai simpla metoda de a diminua aberatia sferica este de a face suprafetele lentilelor cu un gradient de curbura variabil (de exemplu suprafete sferice) proiectat exact pentru a compensa faptul ca

pentru unghiuri mai mari, ceea ce invalideaza teoria paraxialitatii (valabila doar pentru unghiuri suficient de mici ale razei fata de axa optica).

In practica insa, datorita proceselor tehnologice, suprafetele sferice cu acuratete sporita sunt mai greu de obtinut.

Din fericire, aceasta aberatie poate fi neglijata pentru anumite conditii de utilizare, prin combinarea efectelor a doua sau mai multe lentile cu suprafete sferice sau cilindrice.

Combinand lentile pozitive cu indici de refractie mici cu lentile negative cu indici de refractie mari este posibila obtinerea unei combinatii care reduce aberatia sferica.

Astigmatismul

Astigmatismul apare, asa cum se vede in figura de mai jos, cand aparent avem doua distante focale.

Front de radiatie astigmatic

Cand un obiect care nu se afla pe axa este focalizat de lentile sferice, asimetria naturala conduce la astigmatism.

In figura de mai jos, planul ce contine atat axa optica cat si punctul in care se afla obiectul se numeste plan tangential. Razele ce se afla in acest plan sunt raze tangentiale, celelalte considerandu-le oblice. Raza principala de la obiect trece prin centrul deschiderii lentilei sau complexului de lentile. Raza principala se mai gaseste si in un plan perpendicular pe cel tangential, numit plan radial.

Figura ilustreaza ca razele de la obiect tangentiale se focalizeaza mai aproape de lentila decat se focalizeaza razele din planul radial. Cand se evalueaza imaginea din razele tangentiale, vedem o linie in directia planului radial. Asemanator, cand evaluam imaginea din razele radiale observam o linie in directia planului tangential. Intre aceste doua puncte de intersectie imaginea este ori eliptica, ori circular incetosata (defocalizata). Astigmatismul se defineste ca separatia acestor doua puncte de intersectie.

Astigmatism reprezentat de sectiuni perpendiculare de fronturi de radiatie electromagnetica

Marimea astigmatismului unui complex de lentile depinde de forma lentilelor numai atunci cand deschiderea sistemului optic nu e in contact cu insasi lentila. (Marea majoritate a sistemelor optice au o fanta (deschizatura) sau perete opritor (planul imaginii) dar totusi, in multe cazuri nu avem decat simpla deschidere a lentilei). Astigmatismul depinde puternic de raportul distantelor conjugate. (Distantele conjugate sunt distanta de la obiect la punctul principal primar (H) si distanta de la punctul secundar primar (H2) la imagine. Punctul principal primar este punctul ce se gaseste la intersectia axei optice cu suprafata principala primara care este suprafata imaginara din masa lentilei unde putem considera ca raza de lumina se difracta putin. Este ca un fel de transpunere a fenomenului de dubla refractie care se intampla in realitate la ambele suprafete reale ale lentilei. Asemanator se defineste si punctul secundar primar. Cele relatate mai sus sunt desenate in figura:

Coma

Reprezentata in figura de mai jos, coma repreizinta variatia maririi cu deschiderea; distorsiunea imaginii creste odata cu distanta de la razele marginale la axa optica.

In lentilele sferice, diferite parti ale suprafetei lentilei prezinta diferite grade de marire. Aceasta da nastere aberatiei numite coma.

Fiecare zona concentrica a lentilei formeaza o imagine in forma de inel, denumit cerc cromatic. Aceasta cauzeaza defocalizare in planul imaginii punctelor ce nu se afla pe axa optica. Un punct al unui obiect ce nu se afla pe axa nu este un punct foarte bine conturat (in planul imaginii) ci apare ca flama unei cozi de cometa.

Curbura imaginii spre margini

Chiar si in absenta astigmatismului, exista o tendinta a sistemelor optice de a realiza imagini pe suprafete curbate mai bine decat pe suprafete plane. Acest efect se numeste curbarea imaginii spre margini. In prezenta astigmatismului, aceasta aberatie se compenseaza deoarece exista doua suprafete astigmatice de focalizare.

Curbarea imaginii spre margini variaza cu patratul unghiului de camp sau patratul inaltimii imaginii. Deci, daca reducem unghiul de camp la jumatate, se poate reduce defocalizarea din curbarea marginilor la un sfert din dimensiunea originala.

Curbarea imaginii la margini

Lentilele pozitive au de obicei tendinta de curbare a imaginii la margini spre interior, iar cele negative spre exterior. Aceasta aberatie poate deci fi ameliorata prin combinatii de lentile pozitive si negative.

Distorsiunea

Planul imaginii se poate nu numai sa fie curbat, dar poate fi si distorsionat. Imaginea unui punct ce nu se afla pe axa optica se poate forma intr-un loc, altul decat cel prezis de teoria paraxiala. Distorsiunea este diferita de coma (unde razele unui punct din afara axei optice nu reusesc sa se intersecteze cu precizie in planul imaginii). Distorsiune inseamna ca, chiar daca imaginea unui punct din afara axei optice se formeaza cu precizie in planul imaginii, locatia sa pe acest plan nu este corecta. Distorsiunea imaginii creste odata cu inaltimea obiectului. Acest efect se prezinta in doua ipostaze: efectul de butoi si efectul de pernita de ace. Acest fenomen nu reduce definitia (rezolutia) sistemului. Inseamna doar ca forma imaginii obiectului nu corespunde exact cu forma obiectului. Distorsiunea este o deplasare a punctului din imagine fata de locatia prezisa de teoria paraxiala in planul imagine si se poate exprima fie ca valoare absoluta fie ca procent din inaltimea imaginii paraxiale.

Este evident ca o lentila sau un sistem de lentile are distorsiuni opuse in functie de locul unde se face focalizarea: in fata sau in spate. Deci, daca un sistem optic este folosit pentru a forma o imagine si acelasi sistem este folosit pentru a o proiecta, aberatia distorsiune se anuleaza. De asemenea, un sistem optic perfect simetric cu magnitudine (marire) 1:1 nu prezinta distorsiune sau coma.

Aberatia cromatica

Aberatia sferica, distorsiunea, coma si curbarea imaginii la margini sunt pur functii de forma suprafetei lentilei si sunt observabile cu lumina monocromatica. Exista insa alte aberatii care apar cand sistemele optice sunt folosite pentru a lucra cu lumina de mai multe lungimi de unda. Indicele de refractie al unui material este o functie de lungime de unda. In acest sens, numim dispersie fenomenul in care componentele de diferite lungimi de unda ale luminii policromatice urmeaza directii diferite dupa trecerea prin un mediu cu un indice de refractie n.

Deci razele ce compun lumina alba se difracta sub diferite unghiuri, la trecerea prin o lentila de exemplu, deoarece e ca si cum lentila ar pezenta indici de refractie diferiti pentru fiecare raza. In figura de mai jos se ilustreaza un fascicul de lumina policromatica incident pe o lentila pozitiva.

Razele de lungime de unda mai mici se focalizeaza mai aproape de lentila decat cele de lungime de unda mai mare. Aberatia cromatica longitudinala se defineste ca distanta axiala dintre focarul cel mai apropiat si focarul cel mai indepartat.

Ca si in cazul aberatiei sferice, lentilele pozitive si negative prezinta tendinte opuse in cazul aberatiei cromatice. Astfel, combinand astfel de lentile cu tendinte opuse pentru a forma un dublet optic, aberatia cromatica poate fi partial corectata. Este necesar sa folosim doua sticle cu caracteristici de dispersie diferite, astfel incat aberatia mai slaba a lentilei negative sa compenseze pe cea mai puternica a lentilei pozitive.

Culoarea laterala

Aceasta aberatie reprezinta diferenta de inaltime a imaginii intre razele albastre si cele rosii. In figura de mai jos se ilustreaza o raza principala ce trece prin un sistem optic cu deschidere (fanta) separata de lentila. Datorita variatiei indicelui de refractie cu lungimea de unda, lumina albastra e refractata mai puternic decat lumina rosie, intersectia cu planul imaginii se face in locatii diferite.

In concluzie, magnitudinea (marirea) depinde de culoare. Aceasta aberatie este foarte dependenta de cat de departe de lentila se gaseste planul imaginii (planul focal).

Pentru multe sisteme optice, termenul de ordinul trei din dezvoltarea Taylor prezentata la inceput poate fi suficient pentru a cuantifica aberatiile. Totusi, pentru sisteme foarte precise sau cand avem deschideri mari sau unghiuri de camp vizual mari, teoria termenului de ordin trei nu mai este adecvata. In aceste cazuri urmarirea exacta a razei este esentiala.

Defecte de vedere

Cele mai frecvente defecte de vedere sunt miopia, respectiv hipermetropia.

Miopii nu pot vedea clar obiectele situate la distanta, in timp ce hipermetropii formeaza o imagine neclara despre obiectele apropiate. Aceste defecte sunt aproape fara exceptie consecinta modificarii formei globului ocular. Pentru o vedere perfecta, globul ocular trebuie sa fie sferic . Globul ocular al miopilor insa este alungit pe plan orizontal, iar cel al hipermetropilor, scurtat . Cu ochelari sau lentile de contact, ambele defecte de vedere pot fi corectate.

Astigmia (sau ochii sasii), este un alt defect al vederii. Cand cei doi ochi privesc in directii diferite.

Un alt defect al ochiului este cataracta. Cand bolnavul are impresia ca priveste lumea printr-un geam, care ingheata treptat. Aceasta boala se dezvolta in timp si nu este insotita de durere.

Referat trimis de: Alexandru Chirica

NOTA IMPORTANTA:
 ARTICOLELE PUBLICATE IN PAGINA DE REFERATE AU SCOP DIDACTIC SI SUNT ELABORATE IN URMA UNEI DOCUMENTARI SUSTINUTE. ESTE STRICT INTERZISA PRELUAREA ARTICOLELOR DE PE SITE SI PREZENTAREA LOR LA ORELE DE CURS. Referatele din aceasta sectiune sunt trimise de diferiti colaboratori ai proiectului nostru. Referatele va sunt prezentate pentru COMPLETAREA STUDIULUI INDIVIDUAL, si va incurajam si sustinem sa faceti si voi altele noi bazate pe cercetari proprii.

REFERAT FIZICA | Telescopul optic

REFERAT FIZICA | Telescopul optic

REFERAT FIZICA | Cuptor cu creuzet pentru topire Al

REFERAT FIZICA | Cuptor cu creuzet pentru topire Al

REFERAT FIZICA | Influenta factorilor fizici

REFERAT FIZICA | Influenta factorilor fizici

REFERAT FIZICA | OCHIUL OMENESC – APARAT OPTIC

REFERAT FIZICA | OCHIUL OMENESC – APARAT OPTIC

REFERAT FIZICA | CONDENSATOARE ELECTROLITICE

REFERAT FIZICA | CONDENSATOARE ELECTROLITICE

REFERAT FIZICA | Iluzii optice

REFERAT FIZICA | Iluzii optice

REFERAT FIZICA | Istoria telescopului

REFERAT FIZICA | Istoria telescopului

REFERAT FIZICA | Instrumente optice specializate

REFERAT FIZICA | Instrumente optice specializate

REFERAT FIZICA | Un atom in spatiu

REFERAT FIZICA | Un atom in spatiu

REFERAT FIZICA | Instalatii electrocasnice

REFERAT FIZICA | Instalatii electrocasnice

REFERAT FIZICA | Lasere

REFERAT FIZICA | Lasere

REFERAT FIZICA | Energia eoliana

REFERAT FIZICA | Energia eoliana

REFERAT FIZICA | Calorimetrie

REFERAT FIZICA | Calorimetrie

REFERAT FIZICA | Avioanele

REFERAT FIZICA | Avioanele

REFERAT FIZICA | Despre seisme si consecintele lor

REFERAT FIZICA | Despre seisme si consecintele lor

REFERAT FIZICA | Executarea bransamentelor aeriene

REFERAT FIZICA | Executarea bransamentelor aeriene

REFERAT FIZICA | Principiul conservarii energiei

REFERAT FIZICA | Principiul conservarii energiei

REFERAT FIZICA  |Fotonul | Efectul fotoelectric

REFERAT FIZICA |Fotonul | Efectul fotoelectric

REFERAT FIZICA | Bomba cu neutroni

REFERAT FIZICA | Bomba cu neutroni

REFERAT FIZICA | Telefonul | Alexander Graham Bell

REFERAT FIZICA | Telefonul | Alexander Graham Bell

REFERAT FIZICA | Poluarea sonora

REFERAT FIZICA | Poluarea sonora

REFERAT FIZICA | TIPURI DE BAROMETRE

REFERAT FIZICA | TIPURI DE BAROMETRE

REFERAT FIZICA | STUDIUL TENSIUNII SUPERFICIALE A LICHIDELOR

REFERAT FIZICA | STUDIUL TENSIUNII SUPERFICIALE A LICHIDELOR

REFERAT FIZICA | Studiul efectului Seebeck

REFERAT FIZICA | Studiul efectului Seebeck

REFERAT FIZICA | DETERMINAREA COEFICIENTULUI DE VÂSCOZITATE AL UNUI LICHID CU VÂSCOZIMETRUL OSTWALD

REFERAT FIZICA | DETERMINAREA COEFICIENTULUI DE VÂSCOZITATE AL UNUI LICHID CU VÂSCOZIMETRUL OSTWALD

REFERAT FIZICA | Determinarea vitezei sunetului

REFERAT FIZICA | Determinarea vitezei sunetului

REFERAT FIZICA | Studiul propagarii caldurii

REFERAT FIZICA | Studiul propagarii caldurii

REFERAT FIZICA | Determinarea constantei Boltzmann

REFERAT FIZICA | Determinarea constantei Boltzmann

REFERAT FIZICA | Proiect “Automat de impachetat chibrituri”

REFERAT FIZICA | Proiect “Automat de impachetat chibrituri”

REFERAT FIZICA | Redresarea curentului alternativ

REFERAT FIZICA | Redresarea curentului alternativ

REFERAT FIZICA | Amplificarea

REFERAT FIZICA | Amplificarea

REFERAT FIZICA | Undele mecanice

REFERAT FIZICA | Undele mecanice

REFERAT FIZICA | Ultrasunetele

REFERAT FIZICA | Ultrasunetele

REFERAT FIZICA | Comanda releului prin calculator

REFERAT FIZICA | Comanda releului prin calculator

REFERAT FIZICA | Marie Curie si Pierre Curie

REFERAT FIZICA | Marie Curie si Pierre Curie

REFERAT FIZICA | ALBERT EINSTEIN

REFERAT FIZICA | ALBERT EINSTEIN

Filozofie

Filozofie

Geografie

Biologie de clasa 6

Lectie virtuala Drept

S-ar putea sa iti placa…

I. L. Caragiale | In vreme de razboi

Nuvela „În vreme de război” apărută în 1898 este o operă realistă cu adănci ecouri din sfera naturalismului.Tema acestei excelente nuvele desi autorul o subtitulase „Schită” este obsesia.Hangiul Stavrache, mostenitorul fratelui său, preotul Iancu din Podeni, plecat pe...

I. L. Caragiale | Nuvelele lui Caragiale | In vreme de razboi

Nuvelele lui Caragiale pun în lumină un Caragiale cu totul nou, diferit de marele dramaturg, atât de bine înzestrat pentru comic în comediile sale. În nuvele Caragiale se dovedeşte a fi un foarte bun analist al stărilor obscure ale subconştientului. Deci suntem în...

I. L. Caragiale | In vreme de razboi

Alaturi de Ioan Slavici, Caragiale este in literatura noastra creatorul nuvelei realist psihologice. Universului comic din piesele de teatru si schite i se substituie in nuvela “In vreme de razboi” dimensiunea tragica a existentei umane.Tema nuvelei este obsesia....